elhacker.net cabecera Bienvenido(a), Visitante. Por favor Ingresar o Registrarse
¿Perdiste tu email de activación?.

 

 


Tema destacado:


+  Foro de elhacker.net
|-+  Foros Generales
| |-+  Foro Libre
| | |-+  Lotería del Niño Estadísticas claves del sorteo pronostico
0 Usuarios y 1 Visitante están viendo este tema.
Páginas: 1 2 [3] Ir Abajo Respuesta Imprimir
Autor Tema: Lotería del Niño Estadísticas claves del sorteo pronostico  (Leído 14,886 veces)
programatrix


Desconectado Desconectado

Mensajes: 3.287


Ver Perfil WWW
Re: Lotería del Niño Estadísticas claves del sorteo pronostico
« Respuesta #20 en: 23 Diciembre 2014, 15:28 pm »

tremolero, la probabilidad es muy engañosa y nada intuitiva. Existe una probabilidad no nula de que en 100 lanzamientos 95 sea cara, muy muy pequeña, (ahora no me voy a poner a calcularlo llevo prisa, pero se puede hacer) pero en el siguiente lanzamiento no podemos decir nada y la probabilidad es del 50% igualmente.
Otra cosa es que la moneda esté trucada o que el tio que lanza la mondela lo haga de cierta manera para que el suceso no sea aleatorio.
En los casinos lo que hacía gente para hacerse ricos es evaluar muchísimas rondas a la ruleta por ejemplo y con un número alto se puede ver que ciertos números tienen más probabilidad, más allá de la desviación típica, ¿Por qué?, porque la ruleta puede tener defectos de fabricación e imperfecciones, entonces si, es posible que un número salga más que otro. Al hacerse el estudio entonces tendríamos un número preferente para apostar y ganar con más probabilidad.

Si tiras una mondeda 100 veces y te salen 95 caras, o bien tienes mucha suerte o bien está trucada la maneda o el lanzador, y yo apostaría por el 2º, pero eso no es estadística, eso es hacer trampa en el juego jaja
En línea

MCLucro

Desconectado Desconectado

Mensajes: 19


Ver Perfil
Re: Lotería del Niño Estadísticas claves del sorteo pronostico
« Respuesta #21 en: 23 Diciembre 2014, 15:36 pm »

En tu ejemplo, creo que te dejas cosas, muchas cosas en el aire, no pretendo ir de entendido, ya que no tengo npi.

Pero creo que entenderas mi logica, en tu ejemplo, dices que tu lanzas tu moneda 100 veces al aire y seguidamente vas a hacer el lanzamiento 101, aunque yo no sepa calcular cuales son las probabilidades, esta claro de que si en 95 lanzamientos ha salido  cara, hay mas probabilidades de que salga cara.

Y se basa ni mas ni menos, en que es la misma persona la que esta lanzando todo el rato la misma moneda y por alguna casualidad tu forma de lanzar genera mas probabilidades de que salga cara.

El lanzamiento de una moneda es un suceso independiente, que quiere decir esto?. Un suceso independiente quiere decir que da igual los resultados que se hayan mostrado con anterioridad, ya que carecen de irrelevancia para el presente experimento. Si tu has lanzado la moneda 100 veces y te ha salido 95 cara ¿quien te dice a ti que después de que te salgan 95 caras no te pueden salir 95 cruz seguidas? Ahora explicando esto de manera medio cientifica ¿porque esto es así?
Bien, un experimento en estadística (en nuestro ejemplo: lanzar una moneda) está compuesto por los posibles sucesos (o resultados del experimento, en nuestro caso, los dos sucesos posibles al lanzar una moneda son: que salga cara o que salga cruz). La estadística NO COMPRUEBA LA VERACIDAD DE LAS COSAS, SOLO TRANSMITE UNA APROXIMACIÓN DE DICHO EXPERIMENTO   Es decir, lo que la estadística intenta estudiar es la certeza con la que ocurren las cosas de un modo subjetivo NO OBJETIVO. Sin embargo, si nosotros poseemos información adicional de dicho experimento podremos de alguna manera variar el porcentaje estadístico inicial que hemos supuesto. Por ejemplo:
Imagina un jugador de poker con pareja de K de mano. Sale de flop 3 A y un jugador apuesta su all-in. Nuestro jugador tiene Full-House de A y K pero está pensando el ir temiendo que otro jugador tenga el A y se enfrente así a un poker de Ases. En esta situación, un jugador aliado de nuestro jugador le guiña el ojo indicándole que el se había retirado de la mano con un A.  Ahora quiero que pienses si sería la misma estadística con la que nuestro jugador ha jugado antes y después de que su aliado le dijera que se ha tirado con un A.  EVIDENTEMENTE NO!! Antes de saber esa información adicional el pensaba que alguien podia tener el A que faltaba en la baraja, pero después de que su compinche le dijera que tiene el A, nuestro jugador sabe que posee la mejor jugada de la mesa ya que nada le puede ganar (solo empataría en caso de que alguien llevara otras dos K)  Por tanto acabas de ver un ejemplo de probabilidad condicionada (muy a lo burro pero mas o menos para que me entiendas)

Resumiendo, la estadística no nos ofrece una certeza, sino una probabilidad de que ocurran las cosas. En el ejemplo de la moneda yo pensaría o que quien lanza la moneda tiene una flor en el culo (mucha suerte xd) o que ha aumentado el peso de la moneda por un lado para aumentar la probabilidad de que salga más por dicho lado (cosa que he visto hacer y funciona bastante bien para sacarse unos eurillos xd)

UN SALUDO Y ESPERO HABERTE AYUDADO AUNQUE SEA UN POQUITO!! JEJE
En línea

El_Andaluz


Desconectado Desconectado

Mensajes: 4.205



Ver Perfil
Re: Lotería del Niño Estadísticas claves del sorteo pronostico
« Respuesta #22 en: 23 Diciembre 2014, 22:28 pm »

Orubatosu
Citar
Eso si, si alguien me indica una formula estadística que tiene en cuenta el numero de casos, para calcular un caso único que me lo diga, porque yo al menos no la conozco

Toma aquí tienes un ejemplo:

Procedimientos de control:

1.      Aleatorización simple y por bloques.

2.      Equilibrado o reequilibrado. Ej.: V.I con dos niveles A y B.

·        Equilibrado: ABBA (A afecta a B, B afecta A).

·        Alternativa (Dos grupos): grupo 1: orden: AB y grupo 2: orden: BA.

3.      Cuadrado latino: sustituye al equilibrado cuando la variable independiente tiene más de dos niveles. Ej. 3 niveles: ABC, ACB, BAC, BCA, CAB, CBA (Permutaciones de 3 elementos: 3 X 2 X 1 = 6)

Definición: Elección de permutaciones al azar sin que se repita posición del nivel de la VI.

1. – ABC                   10 sujetos al azar ( con  n = 30)

2. - ACB

3. – BAC                   10 sujetos al azar.

4. - BCA

5. – CAB                   10 sujetos al azar.

6. - CBA

No exclusivamente intrasujeto, sino también Inter.-grupo.

Es un diseño idóneo para el estudio de enfermedades crónicas y enfermedades que afectan a grandes grupos de población. Muy utilizado en los ensayos clínicos.

DISEÑOS COMPLEJOS O DISEÑOS FACTORIALES.

Es un tipo de diseño experimental en el que hay más de una variable independiente. Cada variable recibe el nombre de factor. Su principal acción es que sirven para valorar el efecto de la interacción, es decir, saber el efecto combinado de las distintas variables. Cada variable recibe el nombre de factor y el número indica los niveles de cada variable.

Ejemplo:        2X2 (dos variables independientes con dos niveles cada una)

                       2X2X3 (tres variables independientes, dos de ellas con dos niveles y una con tres)

Ejemplo de un diseño complejo o factorial:

Hipótesis: Las personas que son distraídas, frente a las que no lo son, aguantan más el dolor. (Meter la mano en agua helada).

Tenemos 2 v. independientes que tienen dos niveles:

·        Distracción (se consigue mediante la lectura de un cuento).- Con cuento (distracción) y - Sin cuento ( sin distracción).

·        Sexo del investigador:- Hombre.- Mujer.

Se forman dos grupos: uno experimental y otro de control.

Y se plantea realizar una estrategia distractiva: leer un cuento mientras se realiza la prueba.

Diseño del experimento: 2 grupos, uno con distracción y al otro sin distracción (no lectura del cuento), y mido el tiempo que aguanta cada uno con la mano sumergida en agua helada.

   La investigadora pensó que ella misma podía ser un elemento de distracción y entonces añadió una variable de confusión que era el “atractivo” de la propia investigadora, pasando el estudio a ser de dos variables y por lo tanto se necesitaban cuatro grupos.

   Las dos variables tenían efecto sobre el dolor, tanto con el entretenimiento como con la presencia del investigador.

   No hubo efecto combinado de potenciación entre las variables.


DISEÑOS EXPERIMENTALES DE CASO ÚNICO. ESTUDIOS DE CASO Y DISEÑOS. TIPOS DE DISEÑO. LIMITACIONES DE LOS DISEÑOS.

El diseño experimental de caso único trabaja con un solo sujeto y puede considerarse una alternativa a la investigación realizada habitualmente en grupos. Los diseños de n=1 y los planes de cuidados de enfermería guardan una estrecha relación en el sentido de la importancia que adquiere la individualidad, ambos significan observar e intervenir.

Las principales VENTAJAS que presentan aplicados a enfermería son:

·        Suponen un instrumentos factible y aplicable en el campo clínico, en donde la investigación experimental resulta más difícil de conseguir dado el carácter individualizado de la atención sanitaria.

·        Los diseños n=1 eliminan la dificultad que para la investigación clínica tiene la homogeneización de la muestra objeto de estudio. El trato con pacientes supone diferentes comportamientos y múltiples formas de expresión, sentimientos y estados emocionales variables, elementos que están presentes y que no pueden ser aislados del contexto del estudio.

·        La ausencia de grupo control, un solo sujeto ejerce como sujeto experimental y a la vez como sujeto control.

Las principales DIFICULTADES Y LIMITACIONES de los diseños n=1 son:

·        La generalización: se apunta que esta se puede efectuar con mayor seguridad si el número de observaciones es mayor. Este aspecto es discutido, ya que otros autores (Castro, 1975) afirma que no importa que la generalización se obtenga a través de una observación en múltiples sujetos o mediante múltiples observaciones a un solo sujeto.

·        La variabilidad: el ser humano al ser individualizado en sus características bio-psicosociales-espirituales, son muchos y muy diversos los factores que influyen en el comportamiento de cada persona, dando lugar a variaciones individuales múltiples.

Los estudios de caso único permiten el desarrollo de múltiples diseños, de entre los cuales se destacan los siguientes:

1.      DISEÑO A-B-A: también llamado diseño de retirada y considerado el prototipo en investigaciones con un solo sujeto. Este diseño presenta una secuencia en la que se elabora una línea base (A), se aplica un tratamiento (B), y finalmente se retira el tratamiento volviendo a la línea base (A). Ej. Estudio del tratamiento de un fármaco para la T.A. Primero se observa una serie de factores (A), después se interviene con el fármaco y se sigue observando (B), y por último se retira el fármaco y se sigue observando (A). En este diseños las series han de ser constantes, hay que hacer el mismo número de observaciones (mediciones) y las condiciones han de ser estándares.

Este tipo de diseño presenta ciertas reservas en su aplicación clínica ya que representa anular o retirar un tratamiento que puede ser beneficioso para el paciente, por ello una alternativa sería:

2.      DISEÑO A-B-A-B: donde se finaliza la investigación con la aplicación y mantenimiento del tratamiento que se ha considerado positivo. Volviendo al ejemplo anterior sería: observación sin tratamiento, con tratamiento, sin tratamiento y observación con tratamiento. Si la serie continua más nos acercamos a un plan de cuidados.

3.      DISEÑO A-B: es otra alternativa, aunque más débil (débil validez interna), es considerado como un diseño de carácter experimentador y para ver la reactividad del sujeto, puede servir como punto inicial para posteriores investigaciones.

4.      DISEÑO B-A-B: el sujeto requiere una intervención inmediata y una vez que queda fuera de peligro se retira el tratamiento. Es poco utilizado, es más un planteamiento teórico.

5.      DISEÑO DE LÍNEA BASE MÚLTIPLE: en ella se registran y se observan no una sino varias variables. Es una diseño adecuado e idóneo para valorar interacciones entre tratamientos.

ANÁLISIS DE LOS DATOS.

En los diseños experimentales de caso único, los datos pueden ser analizados mediante técnicas visuales o de representación gráfica o bien a través de procedimientos estadísticos. Sin embargo debe recordarse que ni los comportamientos de las personas son uniformes y constantes, ni las circunstancias permanecen siempre intactas, presentándose así una de las dificultades que se señalaba con anterioridad en lo que a variabilidad de datos se refiere. Esto da lugar a ciertas limitaciones a la hora de analizar e interpretar, dificultades que deberán ser tenidas en cuenta a la hora de obtener conclusiones.
« Última modificación: 23 Diciembre 2014, 22:42 pm por Elsevi » En línea

Orubatosu


Desconectado Desconectado

Mensajes: 2.515


Ver Perfil WWW
Re: Lotería del Niño Estadísticas claves del sorteo pronostico
« Respuesta #23 en: 24 Diciembre 2014, 11:20 am »

Hombre... me estas poniendo un ejemplo donde el factor humano destroza la idea de la aleatoriedad.

Lo que pido (y se que no lo hay) es un ejemplo de un fenómeno aleatorio real donde los resultados anteriores condicionen los nuevos.

De hecho, si los resultados anteriores condicionaran los nuevos, no sería aleatorio.

Lo de la mano en el agua me recuerda una "putada" que me hicieron visitando la zona de los 5 lagos (cerca del monte Fuji) donde me dijeron que "hay una tradición milenaria de meter la mano en el agua fría (de la montaña) durante un minuto entero"

Saqué la mano acartonada e insensible de lo fría que estaba el agua... la tradición milenaria tenía exactamente un minuto y medio  ;D

La idea, es que si tienes una moneda "ideal" (en estos casos es mas simple tomar casos ideales) perfectamente equilibrada, la lanzas con una fuerza y dirección arbitraria, etc... como desconoces los datos iniciales del lanzamiento, la probabilidad es que caiga como cara o cruz.

Si la moneda cae 100 veces seguidas "cara", o bien estás ante un caso de condiciones iniciales falsas (no son realmente aleatorias, con lo cual la estadística no es correcta) o estás ante una secuencia realmente aleatoria.

En el segundo caso, la probabilidad del lanzamiento 101 sigue siendo del 50%, en el caso de que las condiciones iniciales favorezcan claramente que caiga "cara", la probabilidad no es válida porque las condiciones del lanzamiento tampoco lo son.

Es como si meto 20 bolas blancas y 20 rojas en una caja opaca con solo un orificio para que metas la mano y cojas una. La probabilidad es siempre del 50% (devolviendo las bolas a la caja claro). Si yo te digo que hay 40 bolas, 20 blancas y 20 rojas, pero en realidad he metido 40 bolas rojas, tu calculo no funciona, pero no lo hace porque los datos que te doy para calcular la probabilidad son falsos.

Un caso diferente sería calcular la probabilidad de sacar un color y otro si vas sacando bolas y no las devuelves, pero ese caso tampoco lo puedes comparar, porque la probabilidad varía en cada extracción porque las condiciones varían también.

De hecho, lo podemos ver así:

Tienes 1000 cajas, cada una con 20 y 20 bolas de dos colores. La operación de sacar una bola de la caja 1, no afecta a la probabilidad de sacar bolas de la caja 2, o la 3, o la 999. El pensar de otro modo sería asumir que los resultados de las otras cajas influyen en el contenido de las cajas que no has tocado, lo cual obviamente no tiene sentido.

De hecho pensemos un momento... ¿estamos diciendo que las bolas que salieron hace años, influyen en las bolas que van a salir este año?

¿Que mecanismo podemos imaginar para que la estraccion de unas bolas (que algunas pueden incluso ser diferentes) que dan vueltas en un enorme bombo sea influido por un evento que tuvo lugar hace un año?

Basta con pensarlo un poco para ver que en realidad, eso carece de sentido, cada sorteo es un evento único sin relación con los anteriores.

« Última modificación: 24 Diciembre 2014, 11:22 am por Orubatosu » En línea

"When People called me freak, i close my eyes and laughed, because they are blinded to happiness"
Hideto Matsumoto 1964-1998
Páginas: 1 2 [3] Ir Arriba Respuesta Imprimir 

Ir a:  

WAP2 - Aviso Legal - Powered by SMF 1.1.21 | SMF © 2006-2008, Simple Machines