elhacker.net cabecera Bienvenido(a), Visitante. Por favor Ingresar o Registrarse
¿Perdiste tu email de activación?.


Tema destacado: Tutorial básico de Quickjs


+  Foro de elhacker.net
|-+  Informática
| |-+  Electrónica
| | |-+  Iniciandome en la simplificacion de la Algebra de Boole
0 Usuarios y 1 Visitante están viendo este tema.
Páginas: [1] Ir Abajo Respuesta Imprimir
Autor Tema: Iniciandome en la simplificacion de la Algebra de Boole  (Leído 8,196 veces)
WaRc3L


Desconectado Desconectado

Mensajes: 336


Ver Perfil
Iniciandome en la simplificacion de la Algebra de Boole
« en: 16 Julio 2009, 11:44 am »

Buenas a todos!, me estoy iniciando en los circuitos digitales, y ahora estoy por la simplificacion de la Algebra de Boole...

Y, me surgio una duda..., la voy a plantear:

a * ( a+ b) = a * a + a*b

no?, pero, si sigues:

a*(a+b) = a + a*b

he eliminado la a, porque he visto que 0 * 0 = 0, i 1 * 1 = 1, osea, da el mismo resultado si el operando es el mismo. No se si eso estoy en lo cierto, porque no lo he encontrado en ninguna parte... me gustaria ver vuestra opinion... gracias.

Saludos!

WaRc3L


En línea

La verdad no se refleja en un espejo
le_roi

Desconectado Desconectado

Mensajes: 110


Le Roi est mort, vive le Roi!


Ver Perfil
Re: Iniciandome en la simplificacion de la Algebra de Boole
« Respuesta #1 en: 17 Julio 2009, 00:24 am »

Querido amigo, estás en lo correcto X*X=X sea X 1 lógico o 0 lógico.

Por otro lado, tu expresión X*(X+Y)=X  (¿puedes demostrarlo?) Esta propiedad aparece en algunos libros como propiedad o le de la absorción.

Código:
X*(X+Y)=(X*X)+(X*Y)
            =X+(X*Y)
            =X*(1+Y)
            =X*(1)
            =X

Espero te sirva.
Nota.- Puedes seguir praticando demostrando que X+(X*Y)=X.


En línea

h0oke


Desconectado Desconectado

Mensajes: 2.059


Coder ~


Ver Perfil WWW
Re: Iniciandome en la simplificacion de la Algebra de Boole
« Respuesta #2 en: 17 Julio 2009, 00:27 am »

Están en lo correcto ambos, en realidad el ejercicio trata la demostración que hizo le_roi.

Un saludo!
En línea

WaRc3L


Desconectado Desconectado

Mensajes: 336


Ver Perfil
Re: Iniciandome en la simplificacion de la Algebra de Boole
« Respuesta #3 en: 17 Julio 2009, 09:27 am »

Gracias a los dos, voy a acabarla a ver si puedo...

Hos comento, ok?

Gracias de verdad  ;)

Saludos!


WaRc3L
En línea

La verdad no se refleja en un espejo
WaRc3L


Desconectado Desconectado

Mensajes: 336


Ver Perfil
Re: Iniciandome en la simplificacion de la Algebra de Boole
« Respuesta #4 en: 17 Julio 2009, 09:39 am »

no me sale...  :-(

me sale que X * ( X+ Y ) = X * Y

Lo que no entiendo, y es  lo que fallo, es que le_roi


Código:
X*(X+Y)=(X*X)+(X*Y)
            =X+(X*Y)
->           =X*(1+Y) <-
            =X*(1)
            =X

esta linia... = X*(1+Y), no entiendo como es que aparece un 1, y cambia de signo...

Tiene algun nombre esta propiedad?, me refiero a si es commutativa, associativa, distributiva, nulo... etc

Voy a explicar lo que he hecho:

X * ( X + Y ) =
X * X + X * Y = aplico la distributiva
X + X * Y = quito la X de antes, porque son dos X de productos
X * Y = quito la X de antes, porque son dos X de suma


Me gustaria que me mostrarais el fallo que he hecho... si es posible, gracias de verdad  :D


Saludos!  :)


WaRc3L
En línea

La verdad no se refleja en un espejo
h0oke


Desconectado Desconectado

Mensajes: 2.059


Coder ~


Ver Perfil WWW
Re: Iniciandome en la simplificacion de la Algebra de Boole
« Respuesta #5 en: 17 Julio 2009, 16:07 pm »

Citar
X * Y = quito la X de antes, porque son dos X de suma

En la "suma" X+X <> X, unicamente en la operación "*" es redundante.

Citar
=X+(X*Y)

Esta parte es igual a : X+1*B por "factor común".
En línea

le_roi

Desconectado Desconectado

Mensajes: 110


Le Roi est mort, vive le Roi!


Ver Perfil
Re: Iniciandome en la simplificacion de la Algebra de Boole
« Respuesta #6 en: 17 Julio 2009, 18:11 pm »

Que tal si lo haces así:
Código:
X*(X+Y)=(XX)+(XY)
            =X+(XY)
            =[X(Y+~Y)]+(XY)
            =XY+X(~Y)+XY
            =XY+X(~Y)
            =X(Y+~Y)
            =X(1)
            =X

Donde
Código:
~Y
es Y negado.

Al hacer
Código:
[X*(Y+~Y)]
estoy multiplicado a la variable X por 1 lógico, lo que no altera el resultado.

Espero se entienda ahora... Como puedes ver, existen distintas maneras de encarar un problema de simplificación por algebra de Boole.

Un saludo.
En línea

WaRc3L


Desconectado Desconectado

Mensajes: 336


Ver Perfil
Re: Iniciandome en la simplificacion de la Algebra de Boole
« Respuesta #7 en: 17 Julio 2009, 19:15 pm »

gracias por responder, pero creo que me tendre que mirar mucho mas esto de la Algebra de Boole... pensaba que ya lo tenia superado  :-[...

Gracias, de verdad, me haveis ayudado mucho  ;)

Saludos!

WaRc3L
En línea

La verdad no se refleja en un espejo
h0oke


Desconectado Desconectado

Mensajes: 2.059


Coder ~


Ver Perfil WWW
Re: Iniciandome en la simplificacion de la Algebra de Boole
« Respuesta #8 en: 17 Julio 2009, 21:06 pm »

El algebra de boole, no es un tema "simple", tienes muchos teoremas.
En línea

h0oke


Desconectado Desconectado

Mensajes: 2.059


Coder ~


Ver Perfil WWW
Re: Iniciandome en la simplificacion de la Algebra de Boole
« Respuesta #9 en: 18 Julio 2009, 17:53 pm »

Siguiendo con el problema, en realidad este es el teorema de redundancia, y por definición axiomática:

Ұ a,b,c € M | a*(a#b) = a

Demostración:

a#φ Elemento neutro de operación #
a#(b*φ) Absorción de la operación b, ya que b*φ = φ
(a#b)*(a#φ) Distributiva de la operación #
(a#b)*a Elemento neutro de la operación φ
a*(a#b) Propiedad conmutativa, algebra de boole.

Quedó demostrado.

Un saludo!
En línea

Páginas: [1] Ir Arriba Respuesta Imprimir 

Ir a:  

Mensajes similares
Asunto Iniciado por Respuestas Vistas Último mensaje
Simplificación matemática
Foro Libre
_OLAYA_ 3 2,175 Último mensaje 22 Noviembre 2015, 12:55 pm
por MCKSys Argentina
WAP2 - Aviso Legal - Powered by SMF 1.1.21 | SMF © 2006-2008, Simple Machines