Autor
|
Tema: Ayuda con reloj, algoritmo. (Leído 7,821 veces)
|
Castiblanco
|
Bueno lo que necesito es una manito con un algoritmo, ideas de como realizarlo. Lo que tengo que hacer es un reloj como dice el titulo. Es en Java en un applet pero bueno eso no importa mucho. Pongo una imagen de fondo como esta: Pero sin las manecillas y pues con el programa tengo que hacer que muestre la hora. Las manecillas la voy hacer con: g.drawLine(x1, y1, x2, y2)
Donde x1 y y1 son el centro del reloj lo cual siempre sería constante, pero x2 y y2 es el que tiene que variar. Voy hablar del minutero, supongamos que el largo es "Largo" entonces cuando tiene que pararse sobre el minuto 0,15,30 y 45 quedaría. g.drawLine(x1, y1, x1, y1-largo)//minuto 0
g.drawLine(x1, y1, x1+largo, y2)//minuto 15
g.drawLine(x1, y1, x1, y1+largo)//minuto 30
g.drawLine(x1, y1, x1-largo, y1-largo)//minuto 45
Creo que así, pero cuando me toque calcular diagonales como las calculo? Cualquier idea es valida o ayuda me serviría mucho. Saludos...
|
|
|
En línea
|
|
|
|
16BITBoy
Desconectado
Mensajes: 137
En mi pompa..
|
Eso se resuelve mejor con calculo de coordenadas polares. Usa un ángulo y la longitud que tiene la manecilla, entonces podrás hacerlo girar tanto como quieras. http://es.wikipedia.org/wiki/Coordenadas_polares
|
|
|
En línea
|
Blog personal: http://www.16bitboy.com/blog- Que horrible pesadilla, unos y ceros por todas partes... hasta me parecio ver un ¡dos! - Bender, solo fue una pesadilla, no existe eso que llamas "dos".
|
|
|
Castiblanco
|
Gracias por tratar de ayudarme, la verdad me pareció muy complejo lo que tu me dices. Opte por hacerlo de otra manera, explico por si alguien en un futuro entra y tiene la misma duda. Hablando del segundero, en su iteración hace 60 paradas por decirlo de algún modo, entonces dividimos esos 60 en 360 = 6. entonces hacemos algo para calcular el angulo dependiendo el segundo. int angulosegundo = 90 - (segundos * 6);
Luego de eso utilizamos la matemáticas. tenemos X que es la longitud de la manecilla entonces, sabemos el angulo y sabemos la hipotenusa, solo es hallar el cateto adyacente y tenemos el x2 (el de g.drawLine(....)) y con el x2 el y2 sale inmediato. Básicamente ese es el único problema del ejercicio. Saludos...
|
|
|
En línea
|
|
|
|
Lunfardo
Desconectado
Mensajes: 568
|
jaja con pitagoras o trigonometria =P
igual tenes que trabajar con los angulos, seria mas eficiente
|
|
|
En línea
|
|
|
|
[D4N93R]
Wiki
Desconectado
Mensajes: 1.646
My software never has bugs. Its just features!
|
Es un reloj, no un transbordador espacial. Si a él le parece más fácil así, pues bien!
Las coordenadas polares es buena solución, pero da igual xD
Saludos!
|
|
|
En línea
|
|
|
|
Castiblanco
|
El problema es que los de la Wikipedia piensan que uno es un matemático y son muy técnicos en sus explicaciones, nada como los vídeos del youtube para esas cosas :p
|
|
|
En línea
|
|
|
|
NSaneBMX
Desconectado
Mensajes: 134
Hello World!
|
Buueno, hace muchisisisimo tiempo que deje de programar en Java, asi que te voy a ayudar mostrandote un algoritmo de manera matematica, despues lo pasas a Java.. Para esto es necesario Calcular senos y cosenos, una vez usandolos, nos acostumbraremos rapidamente a ellos Para este ejemplo, vamos a suponer que el segundero va en el segundo 45, el largo de la manecilla es de 50px, y la posicion central de la manecilla es 60px. -Para calcular su angulo, realizamos la siguiente operacion... AnguloSeg = ( Segundo * 360) / 60 - 90 Equivalente a... AnguloSeg = ( 45 * 360) / 60 - 90 Le restamos un desfase de 90 grados, de modo que la aguja apunte hacia ariba cuando este en 0.. Entonces... AnguloSeg = 180 Ya tenemos el angulo de la manecilla, ahora falta calcular las posiciones x2 e y2, que serian las puntas.. -Calcular la posicion x2 de la manecilla Coseno = Cos( AnguloSeg * ((2 * 3.1415) / 360)) Equivalente a.. Coseno = Cos( 180 * ((2 * 3.1415) / 360)) Entonces.. Coseno = -1.0 sabiendo el Coseno, lo multiplicas por el largo de la manecilla, y a eso, le agregamos el centro de la manecilla, que seria x1... x2 = Largo * Coseno + x1 Equivalente a... x2 = 50 * -1.0 + 60 Entonces... x2 = 10.0 ;Calcular la posicion y2 de la manecilla Seno = Sin( AnguloSeg * ((2 * 3.1415) / 360)) Equivalente a... Seno = Sin( 180 * ((2 * 3.1415) / 360) Entonces... Seno = 0.00000002433593 sabiendo el Seno, lo multiplicas por el largo de la manecilla, y a eso, le agregamos el centro de la manecilla, que seria y1... y2 = Largo * Seno + y1 Equivalente a... y2 = 50 * 0.00000002433593 + y1 Entonces... y2 = 60.000001216796441 Bueno, espero haya servido de ayuda.. cualquier duda, aqui estare..
|
|
|
En línea
|
ASUS Sabertooth 990FX R2.0, FX8350, Cooler Master Hyper N620, Sapphire Radeon R9 290 4Gb, 8Gb RAM 1600mhz, 2TB SATA III RAID, 1TB SATA III, Thermaltake 750W.
|
|
|
NSaneBMX
Desconectado
Mensajes: 134
Hello World!
|
De nada..
|
|
|
En línea
|
ASUS Sabertooth 990FX R2.0, FX8350, Cooler Master Hyper N620, Sapphire Radeon R9 290 4Gb, 8Gb RAM 1600mhz, 2TB SATA III RAID, 1TB SATA III, Thermaltake 750W.
|
|
|
Castiblanco
|
Si ves mi segundo mensaje creo que es lo mismo que tu dices, solo que no explique todo pues no lo vi tan necesario. "Luego de eso utilizamos la matemáticas. tenemos X que es la longitud de la manecilla entonces, sabemos el angulo y sabemos la hipotenusa, solo es hallar el cateto adyacente y tenemos el x2 (el de g.drawLine(....)) y con el x2 el y2 sale inmediato." Igual gracias por tomarte el trabajo de responder Saludos...
|
|
|
En línea
|
|
|
|
|
|