Foro de elhacker.net

Seguridad Informática => Criptografía => Mensaje iniciado por: FFernandez en 28 Noviembre 2021, 14:22 pm



Título: Secuencias enfoque Criptográfico
Publicado por: FFernandez en 28 Noviembre 2021, 14:22 pm
Numerar (ordenar.etc.) una secuencia es relativamente fácil, el reverso es donde está el problema………….    Podemos numerar (X por Y) y obtener su Z.

Lo difícil es el Reverso-Tenebroso, nos dan Z y cómo podemos obtener el índice numerado de (X por Y).

Me leo y no me entiendo:

Secuencia valor   1,3,6,10, ……etc…….  ¿Cuál es elemento 99?, sabiendo que el valor =1 es el elemento 1.
.. n=Elemento
Existe su relación Valor= n(n+1) /2

Bien la cuestión se complica si te doy el número 6441 y te pido n. En este caso es fácil.


La cuestión está en saber llegar a V=n(n+1) /2

¿Como lo haría ustedes?   ………………..


Título: Re: Secuencias enfoque Criptográfico
Publicado por: Serapis en 28 Noviembre 2021, 16:54 pm
De entrada 4 números, no son representativos de una única serie...
Luego, el enfoque no está adecuadamente planteado, no se entiende bien qué es lo que buscas.

En cualquier caso cuando quieres modos de resolver una serie, existe en internet un sitio especializado en ello, basta meter unos números consecutivos de la serie y te localiza y muestra las entradas recogidas... pincha en cada una para ir a los detalles. para cada serie recogida se documenta bien (y abundante):
http://oeis.org/search?q=1%2C3%2C6%2C10&language=english&go=Search


Título: Re: Secuencias enfoque Criptográfico
Publicado por: FFernandez en 28 Noviembre 2021, 18:41 pm
De entrada 4 números, no son representativos de una única serie...
Luego, el enfoque no está adecuadamente planteado, no se entiende bien qué es lo que buscas.

En cualquier caso cuando quieres modos de resolver una serie, existe en internet un sitio especializado en ello, basta meter unos números consecutivos de la serie y te localiza y muestra las entradas recogidas... pincha en cada una para ir a los detalles. para cada serie recogida se documenta bien (y abundante):
http://oeis.org/search?q=1%2C3%2C6%2C10&language=english&go=Search

Tienes la formula …………   y el inicio de la secuencia.
Rastrear Internet solo te ayudara en la forma de llegar a la formula V=n(n+1)/2 que descubrió GAUSS.

Lo que busco, es que pongáis la forma de llegar a esa fórmula.
Parece redundante, pero no puedo anticiparme a nada, sino no me vais a entender.
Encontrar una secuencia distinta con esos 4 primeros términos para mi seria una tarea Titánica.    


Título: Re: Secuencias enfoque Criptográfico
Publicado por: fzp en 28 Noviembre 2021, 18:46 pm
Lo que yo interpreto que se pide:
dada una sucesión cualquiera de números naturales, que se nos asegura que responde a una ecuación polinómica, ¿existe alguna forma sistemática (algoritmo) de encontrar cuál es esa fórmula polinómica?

A mi entender: NO.

Existen infinitos polinomios, con infinitos coeficientes, exponentes, y dentro cada uno de esos infinitos, infinitos valores para esos coeficientes y exponentes.

Para ceñirnos al ejemplo: V=n(n+1) /2. Aparte del "n" de la sucesión -ése no cuenta por ser el propio de la sucesión- existen otros números naturales implícitos que podrían ser otros. Por ejemplo: el 1 y el 2.

Con V=n(n+2.000.000)/4 ya tenemos otra sucesión distinta. Sólo cambiando la pareja 1-2 por 2.000.000-4. Como solamente ahí ya hay infinitoxinfinito de parejas; ya nada más ahí tenemos infinito x infinito de posibilidades a explorar. Y éso que es sólo un sumando. Podríamos tener varios sumandos y exponentes: V=n^5(n^3+359.000)/(4n^3) + 2*n^3-6*n^2+(3-n)... :rolleyes:

Y solo dentro de esa expresión, se podrían cambiar los exponentes 3,2 por exponentes 450, 4. Y cambiar los coeficientes 2, 6 por 35, 41. Y... :rolleyes:

Esa absolutamente imposible.

 La única forma es prueba/error; o lo que traducido a informática se entienede por fuerza bruta. Pero aunque se dispusiera de una máquina con capacidad de procesamiento infinita -infinita RAM para guardar infinitos números, etc- y aunque se dispusiera de infinitos programadores... aún haría falta infinito de tiempo para encontrar las infinitas posibles sucesiones polinómicas de números naturles.

Así que -tal como yo lo veo- No, no es posible.

Otra cosa es -que como indica Serapis- existan ya un montón de sucesiones encontradas y tabuladas. Y que -me imagino- corresponden a las sucesiones más comunes. Pero no a una cualquiera rebuscada.


Título: Re: Secuencias enfoque Criptográfico
Publicado por: fzp en 28 Noviembre 2021, 18:52 pm
... la formula V=n(n+1)/2 que descubrió GAUSS.
...

Referencias, por favor. ¿Qué quiere decir que la descubrió Gauss? La ecuación está ahí. No necesita que la descubra nadie. Al igual que nadie tiene que descubrir que existe la ecuación:
V=3n(7n+5)/18

Quizá lo que descubriera Gauss es que esa ecuación responde a algún fenómeno determinado de la naturaleza. En ese caso me gustaría saber cuál es.




Título: Re: Secuencias enfoque Criptográfico
Publicado por: FFernandez en 28 Noviembre 2021, 18:57 pm
Referencias, por favor. ¿Qué quiere decir que la descubrió Gauss? La ecuación está ahí. No necesita que la descubra nadie. Al igual que nadie tiene que descubrir que existe la ecuación:
V=3n(7n+5)/18

Quizá lo que descubriera Gauss es que esa ecuación responde a algún fenómeno determinado de la naturaleza. En ese caso me gustaría saber cuál es.




No desvié el tema , ¿América ya existía, quien la descubrió?  
Responde a obtener la suma de todos los anteriores + el actual.  
1
2+1
3 + 3
4 + 6  = 10   es la suma de   1+2+3+4



Lo que yo interpreto que se pide:
dada una sucesión cualquiera de números naturales, que se nos asegura que responde a una ecuación polinómica, ¿existe alguna forma sistemática (algoritmo) de encontrar cuál es esa fórmula polinómica?

A mi entender: NO.

Existen infinitos polinomios, con infinitos coeficientes, exponentes, y dentro cada uno de esos infinitos, infinitos valores para esos coeficientes y exponentes.

Para ceñirnos al ejemplo: V=n(n+1) /2. Aparte del "n" de la sucesión -ése no cuenta por ser el propio de la sucesión- existen otros números naturales implícitos que podrían ser otros. Por ejemplo: el 1 y el 2.

Con V=n(n+2.000.000)/4 ya tenemos otra sucesión distinta. Sólo cambiando la pareja 1-2 por 2.000.000-4. Como solamente ahí ya hay infinitoxinfinito de parejas; ya nada más ahí tenemos infinito x infinito de posibilidades a explorar. Y éso que es sólo un sumando. Podríamos tener varios sumandos y exponentes: V=n^5(n^3+359.000)/(4n^3) + 2*n^3-6*n^2+(3-n)... :rolleyes:

Y solo dentro de esa expresión, se podrían cambiar los exponentes 3,2 por exponentes 450, 4. Y cambiar los coeficientes 2, 6 por 35, 41. Y... :rolleyes:

Esa absolutamente imposible.

 La única forma es prueba/error; o lo que traducido a informática se entienede por fuerza bruta. Pero aunque se dispusiera de una máquina con capacidad de procesamiento infinita -infinita RAM para guardar infinitos números, etc- y aunque se dispusiera de infinitos programadores... aún haría falta infinito de tiempo para encontrar las infinitas posibles sucesiones polinómicas de números naturles.

Así que -tal como yo lo veo- No, no es posible.

Otra cosa es -que como indica Serapis- existan ya un montón de sucesiones encontradas y tabuladas. Y que -me imagino- corresponden a las sucesiones más comunes. Pero no a una cualquiera rebuscada.




No entiendo nada, pon un ejemplo en el cual los primeros 4 valores sean esos.

La formula la he puesto poque no es relevante para el tema que quiero plantear


De esa manera os facilito la participación


Título: Re: Secuencias enfoque Criptográfico
Publicado por: Serapis en 28 Noviembre 2021, 20:42 pm
Tienes la formula …………   y el inicio de la secuencia.
Lo que busco, es que pongáis la forma de llegar a esa fórmula.
Parece redundante, pero no puedo anticiparme a nada, sino no me vais a entender.
Las series es un tema resuelto. Hay series aritméticas y series geométricas.
Dada una razón y los valores extremos, pueden hallarse 'n' términos intermedios. Intercambiando parámetros, esto es despejando... pueden calcularse unos valores dados otros. Calcular por tanto el término 99 de la serie, el 6541 o uno que precisa 100 dígitos para expresarlo, es solo una cuestión de tiempo de cálculo...
  
Encontrar una secuencia distinta con esos 4 primeros términos para mi seria una tarea Titánica.  
Es estéril perder tiempo en eso. Entiendo que quien no tenga una base matemática mínima tenga que andar tirando de tentativas.
https://es.wikipedia.org/wiki/Serie_aritm%C3%A9tica
https://es.wikipedia.org/wiki/Serie_geom%C3%A9trica


Rastrear Internet solo te ayudara en la forma de llegar a la formula V=n(n+1)/2 que descubrió GAUSS.
Qué rastrear ni qué niño muerto...?.

La web que te proporciono, resulta útil para hallar series (conocidas y con alguna '¡importancia') de las cuales solo tienes unos valores dados de la serie... te facilita info sobre varias series que cumplan ese criterio mínimo, es habitual que haya más de una que lo contenga en su secuencia.
Luego tu verás cual de ellas se ajusta al criterio que estés buscando (si es alguna de ellas y si es que estás buscando).
La info dada para una serie, te cita los autores que la han datado y siempre una fórmula (en realidad suelen darse varias) para hallar los valores de la serie, es muy probable que más de 1 autor hayan llegado a la misma serie desde diferentes perspectivas y que incluso la hayan resuelto de modo distinto (pero equivalente, lógicamente).

Si simplemente para ti es un mero entretenimiento, empieza por ahí, y buenaventura. No acostumbro a perder tiempo en tonterías, prefiero hacerlo en cosas donde alguien lo necesite, y no donde simplemente 'le divierta'.


p.d.: en resumen, que tiene esto de 'criptografía'?. Entiendo que para un mono una raíz cuadrada sea criptografía.




Título: Re: Secuencias enfoque Criptográfico
Publicado por: FFernandez en 28 Noviembre 2021, 20:58 pm
Las series es un tema resuelto. Hay series aritméticas y series geométricas.
Dada una razón y los valores extremos, pueden hallarse 'n' términos intermedios. Intercambiando parámetros, esto es despejando... pueden calcularse unos valores dados otros. Calcular por tanto el término 99 de la serie, el 6541 o uno que precisa 100 dígitos para expresarlo, es solo una cuestión de tiempo de cálculo...
  Es estéril perder tiempo en eso. Entiendo que quien no tenga una base matemática mínima tenga que andar tirando de tentativas.
https://es.wikipedia.org/wiki/Serie_aritm%C3%A9tica
https://es.wikipedia.org/wiki/Serie_geom%C3%A9trica

Qué rastrear ni qué niño muerto...?.

La web que te proporciono, resulta útil para hallar series (conocidas y con alguna '¡importancia') de las cuales solo tienes unos valores dados de la serie... te facilita info sobre varias series que cumplan ese criterio mínimo, es habitual que haya más de una que lo contenga en su secuencia.
Luego tu verás cual de ellas se ajusta al criterio que estés buscando (si es alguna de ellas y si es que estás buscando).
La info dada para una serie, te cita los autores que la han datado y siempre una fórmula (en realidad suelen darse varias) para hallar los valores de la serie, es muy probable que más de 1 autor hayan llegado a la misma serie desde diferentes perspectivas y que incluso la hayan resuelto de modo distinto (pero equivalente, lógicamente).

Si simplemente para ti es un mero entretenimiento, empieza por ahí, y buenaventura. No acostumbro a perder tiempo en tonterías, prefiero hacerlo en cosas donde alguien lo necesite, y no donde simplemente 'le divierta'.


p.d.: en resumen, que tiene esto de 'criptografía'?. Entiendo que para un mono una raíz cuadrada sea criptografía.




Lo importante es:
Como se llega a la fórmula que enlaza los términos con su valor. En este caso concreto.


No es ningún entretenimiento, aunque te lo parezca, no pongo en duda tu percepción.


Para esta secuencia es fácil, pero no todas se encuentran en Internet, en esto si tienes razón hay que tener conocimientos matemáticos y tener los conceptos bien puestos, sobre todo los conceptos.  Para elaborar el algoritmo(Formula).


Título: Re: Secuencias enfoque Criptográfico
Publicado por: Serapis en 29 Noviembre 2021, 17:35 pm
Citar
(Existe su relación Valor= n(n+1) /2
Bien sí lo que quieres es saber como se llega a esa función...

Supongamos que tenemos 9 términos, 1-9.
La solución (de esta serie) es una suma de los términos naturales enteros comenzando desde el 1.
1+2+3+4+5+6+7+8+9...
Pero dados en los valores claculados tras cada suma:
0+1=1
1+2=3
3+3=6
6+4= 10
10+5=15
Si te fijas el número a la izquierda es la suma total hasta ese momento, y el número  que se le suma (el de la derecha) es el siguiente término.

Pues bien, podemos emparejarlos sumandos los extremos. Es decir es como si tuviéramos una pila-cola de la que extraemos a la vez, un valor de la cima y otro de la base y los sumamos... mira lo que pasa:
1+9 = 10
2+8= 10
3+7= 10
4+6= 10
5 = 5
(Este último no tiene con quien sumarse, sucede siempre que haya un número impar de términos, luego probamos una serie con términos par).
Ahora pasamos a tener (de este modo (n+1)/2 terminos, es decir antes n= 9 términos a sumar ahora m= (9+1)/2= 5 términos a sumar (10+10+10+10+5)... como ahora hay 4 términos cuyo valor suman 10 y 1 término que suma 5, podemos volver a tener la misma cantidad de términos, si esos que se sumaron entre sí, los dividimos entre 2
1; 10/2 = 5, 9; 10/2= 5
2; 10/2 = 5; 8; 10/2= 5
3; 10/2 = 5; 7; 10/2= 5
4; 10/2 = 5; 6; 10/2= 5
5= 5
Y así volvemos a tener nuevamente 9 términos, peor ahora todos valen 5.

Luego, ahora aquella suma inicial puede resolverse como una múltiplicación de términos, pués comparten el valor en común.
Luego si n= 9 sumandos, y llegamos a que el valor común se calculó como: m= ((n+1)/2), se concluye que suma= (n*m) o sin calcular m aparte: suma = ( n*((n+1)/2). Es decir ultimo termino *  ((último término + primer termino)/2), como primer término es siempre 1 y el 0 no cuenta en la cantidad de términos...
 y aplicando finalmente suma = 9*((9+1)/2)= 9*5= 45

Miremos un ejemplo añadiendo un término más a la serie, ahora son n=10
1+10 = 11
2+9= 11
3+8= 11
4+7= 11
5+6= 11
Como se ve ahora, no hay 'sobrantes'... sin embargo eso no cambia la solución porque antes sobraba el ´termino del medio que era un impar y ahora, cuando dividamos entre dos para seguir obteniendo el mismo númeor de términos, tendremos un valor decimal x.5.
1; 11/2= 5.5 10; 11/2= 5.5
2; 12/2 = 5.5; 9; 11/2= 5.5
3; 12/2 = 5.5; 8; 11/2= 5.5
4; 12/2 = 5.5; 7; 11/2= 5.5
5; 12/2 = 5.5; 6; 11/2= 5.5
Como se ve, igualmente podemos resolver ahora la suma por una multiplicación, como los términos sigueinsiendo la misma cantidad (10), por el valor que todos ellos tienen en común (5.5), como el valor de 5.5 hemos llegado (igual que antes), procediendo a sumas 2 valores equidistantes del centro (o simplificando el ultima + el primero) y luego dividiendo entre 2... la fórmula no ha cambiado, solo los valores a aplicar: suma= 10*((10+1)/2)= 10*5.5 = 55

Queda pués bastante claro que la fórmula se obtiene pasando de una suma a una multiplicación dada la propiedad de que la suma de dos números equidistantes del centro, es igual a la suma de cualquiera otros dos números equidistantes del centro.
Presenta un caso par y un caso impar, el caso par obtiene valores decimales, es decir:
par por valores decimales = impar por valores enteros
Ya que multiplicar un valor impar por un número entero, implica que el valor que es impar se suma en su mitad (9*5)= (8*5) + (1*5)= (4*10) + (1*5)  es decir ehmos llegado a cuando sumamos los extremos por parejas tras extraerlos de la base y cima...

Creo que se entiende si se sigue el razonamiento en vez de saltar la lectura...



Título: Re: Secuencias enfoque Criptográfico
Publicado por: FFernandez en 29 Noviembre 2021, 23:52 pm
ORDEN                                                    VALOR     Siguiente Valor

1   X                                                           1            +2  =  3
2   XX                                                         3            +3  =  6
3   XXX                                                       6            +4  = 10
4   XXXX                                                   10            +5  = 15
5   XXXXX                                                 15            +6  = 21
6   XXXXXX                                               21            +7  = 28
7   XXXXXXX                                             28            +8  = 36
8   XXXXXXXX                                           36

Gracias por la aportación
Tu planteamiento es correcto.
Esperemos otras aportaciones con enfoques distintos.




Título: Re: Secuencias enfoque Criptográfico
Publicado por: fzp en 30 Noviembre 2021, 11:50 am
Entonces yo no había entendido bien la pregunta inicial.Por lo visto la pregunta es la demostración de que la suma de los n números naturales "1+2+...+n" es igual a n(n+1) /2.

Yo creía que la sucesión 1, 3, 6, 10,... solo se ponía como ejemplo, y que podía ser cualquier otra. Es decir yo pensaba que el problema era: dada una sucesión cualquiera de números naturales, sin más condición que la de que se sabe que responde a una fórmula polinómica (que no es, por ejemplo aleatoria)...determinar cuál es ésa fórmula. Y que se ponía como ejemplo: si nos dan la sucesión 1, 3, 6, 10,... ¿cómo averiguamos que responde a la fórmula n(n+1)/2?

No que se trataba de calcular la suma de n números naturales, sino que se daba como dato 1, 3, 6, 10,... Pero que podría ser cualquier otra sucesión.

Por ejemplo que podían habernos dicho: dada la sucesión 1, 280, 565, 856, 1.153, 1.456, 1.765,... y sabiendo que responde a una fórmula, averiguar cuál es ésa fórmula.

Y de la misma forma para averiguar la fórmula de cualquier sucesión dada (que se sepa que viene dada por una fórmula). Quizá la pregunta podría haber sido simplemente: ¿cómo se demuestra que la suma de los "n" primeros números naturales es igual a n(n+1)/2?


Título: Re: Secuencias enfoque Criptográfico
Publicado por: FFernandez en 30 Noviembre 2021, 13:04 pm
Entonces yo no había entendido bien la pregunta inicial.Por lo visto la pregunta es la demostración de que la suma de los n números naturales "1+2+...+n" es igual a n(n+1) /2.

Yo creía que la sucesión 1, 3, 6, 10,... solo se ponía como ejemplo, y que podía ser cualquier otra. Es decir yo pensaba que el problema era: dada una sucesión cualquiera de números naturales, sin más condición que la de que se sabe que responde a una fórmula polinómica (que no es, por ejemplo aleatoria)...determinar cuál es ésa fórmula. Y que se ponía como ejemplo: si nos dan la sucesión 1, 3, 6, 10,... ¿cómo averiguamos que responde a la fórmula n(n+1)/2?

No que se trataba de calcular la suma de n números naturales, sino que se daba como dato 1, 3, 6, 10,... Pero que podría ser cualquier otra sucesión.

Por ejemplo que podían habernos dicho: dada la sucesión 1, 280, 565, 856, 1.153, 1.456, 1.765,... y sabiendo que responde a una fórmula, averiguar cuál es ésa fórmula.

Y de la misma forma para averiguar la fórmula de cualquier sucesión dada (que se sepa que viene dada por una fórmula). Quizá la pregunta podría haber sido simplemente: ¿cómo se demuestra que la suma de los "n" primeros números naturales es igual a n(n+1)/2?



Podría haber sido, estas en lo correcto, es lo que quiero, pero no es lo importante, lo importante es el enfoque que se le da para demostrarlo.
Espero tu colaboración, gracias.


Título: Re: Secuencias enfoque Criptográfico
Publicado por: fzp en 30 Noviembre 2021, 16:35 pm

Podría haber sido, estas en lo correcto, es lo que quiero, pero no es lo importante, lo importante es el enfoque que se le da para demostrarlo.
Espero tu colaboración, gracias.


No va a ser posible. La palabra "enfoque" puede que tenga un significado unívoco y muy preciso en óptica, fotografía, teatro o cine. Pero en este contexto es algo ambigua e imprecisa. No sé exactamente qué significa -aquí- y que es lo que se espera de mí, y en ese caso es mejor que me abstenga.

En matemáticas y lógica se emplea un lenguaje muy concreto, específico e inequívoco, donde las expresiones no se prestan -generalmente- a la ambivalencia, confusión o equívoco. De ahí las expresiones: "para todo x...", "existe al menos un x tal que...", etc. Me temo que no se me alcanza el significado exacto de "enfoque" en este contexto; y por tanto, no puedo aportar nada.


Título: Re: Secuencias enfoque Criptográfico
Publicado por: FFernandez en 30 Noviembre 2021, 19:28 pm
No va a ser posible. La palabra "enfoque" puede que tenga un significado unívoco y muy preciso en óptica, fotografía, teatro o cine. Pero en este contexto es algo ambigua e imprecisa. No sé exactamente qué significa -aquí- y que es lo que se espera de mí, y en ese caso es mejor que me abstenga.

En matemáticas y lógica se emplea un lenguaje muy concreto, específico e inequívoco, donde las expresiones no se prestan -generalmente- a la ambivalencia, confusión o equívoco. De ahí las expresiones: "para todo x...", "existe al menos un x tal que...", etc. Me temo que no se me alcanza el significado exacto de "enfoque" en este contexto; y por tanto, no puedo aportar nada.





Podría poner Simplemente un razonamiento distinto.


Utilizo Enfoque, porque debes de poder visualizar lo que quieres demostrar. La otra respuesta, por ejemplo; visualizo un punto de partida, se dio cuenta, luego lo …. Resolvió.

Enfoque en el sentido amplio del ingenio humano.


Título: Re: Secuencias enfoque Criptográfico
Publicado por: fzp en 30 Noviembre 2021, 23:24 pm
Hay dos posibles respuestas, según se considere que la pregunta que se está haciendo (como ya dije anteriormente yo me imaginé que era una pregunta pero, al parecer era otra). Así que hay dos casos.

1) ¿La pregunta se refiere a que cómo se demuestra que la suma de los "n" primeros números naturales (1 + 2+ 3 +...+ n) es = a n(n+1)/2?
Si la pregunta es ésa a mi no se me ocurre ningún método o enfoque distinto de los que ya se han citado. O sea que no se me ocurre otra forma de demostrarlo. Ya Serapis indicó en su primer enlace que, en realidad, es sólo un caso particular de la demostración -mucho más general- de la suma de términos de una progresión aritmética; con la circunstacia de que la progresión sea la de los propios números naturales, y que el primer término sea el 1 y el último, n.
Eso está deducido hace mucho tiempo y por cierto, no fue Gaus quién la descubrió. Gauss -al parecer, es una anécdota- lo que hizo intuitívamente, a los 9 años de edad en clase de matemáticas fue el razonamiento de que 100 = 99+1 = 98+2 = 97+3,..., de forma similar a como también Serapis indicó en otro mensaje con menos números, y de ahí deducir cuanto sumaban los 100 primeros números naturales (1+2+3+...+100). Pero la ecuación general no la dedujo él.
Yo, por mi parte no se me ocurre otra forma de deducirla, tampoco puede haber tantas. Y si existen, lo más normal es que se demuestre que, en realidad, son equivalentes y es simplemente otra forma de deducir lo mismo.
Algo parecido a la formulación matricial de la Mecánica Cuántica de Heisenberg y la formulación de la Mecánica Ondulatoria de Schrödinger, que se demostró posteriormente que son equivalentes y que es lo mismo.
Así que si lo del enfoque, lo que pretende es que se me ocurra otra forma de demostrar (distinta de las que ya existen) que la suma de los números 1+2+...+n es = n(n+1)/2; pues no, no se me ocurre. (Y  si se me ocurriera lo más probable es que fuese algo equivalente a las demostraciones que ya hay).

2) Puede que no sea éso lo que se pregunta, sino lo que yo creí inicialmente, que la pregunta es: dada una sucesión de números naturales que se sabe que responden a una fórmula polinómica: ¿existe algún método para encontrar esa fórmula?
Y entonces me tengo que remitir a mi primera respuesta: creo que no porque puede haber infinitas posibilidades.
Para poner un ejemplo, en un mensaje anterior puse cómo ejemplo de una sucesión la siguiente:
1, 280, 565, 856, 1.153, 1.456, 1.765,...
Pues bien, el término general -la fórmula mediante la que se pueden calcular los términos de la sucesión, es:
51(n-27)+(43+n)3n+90n+1105
¿Qué cómo lo sé? ... Pues porque me la inventé yo, naturalmente.
Pero la cuestión es que se podrían cambiar el 51 por, por ejemplo, el 53, o el 467. De igual forma el 43, el 3 de "3n", o el 90, o el 1105, o cambiar los signos, o añadir más términos, como por ejemplo -3576(n-10) o aumentar exponentes, o...
Por eso, como puede haber un nº indeterminado de sumandos, restandos, multiplicandos, dividendos, exponentes, y, además cada uno de ellos puede ser cualquier nº natural, y además los coeficientes (51, 27, 43, 3, 90, 1105,...) puede ser cualquiera, ya que existen infinitos números naturales...
... pues es por éso que no creo que exista un método determinado para encontrar la fórmula polinómica -término general- de una sucesión; a partir de los números de la propia sucesión.

Así que en este segundo caso mi enfoque es el mismo que ya dije en mi primer mensaje: no existe forma (o al menos a mi no se me ocurre) de encontrar el término general de una sucesión de números naturales, aunque se sepa que corresponden a una fórmula polinómica.



Título: Re: Secuencias enfoque Criptográfico
Publicado por: FFernandez en 30 Noviembre 2021, 23:53 pm
Hay dos posibles respuestas, según se considere que la pregunta que se está haciendo (como ya dije anteriormente yo me imaginé que era una pregunta pero, al parecer era otra). Así que hay dos casos.

1) ¿La pregunta se refiere a que cómo se demuestra que la suma de los "n" primeros números naturales (1 + 2+ 3 +...+ n) es = a n(n+1)/2?
Si la pregunta es ésa a mi no se me ocurre ningún método o enfoque distinto de los que ya se han citado. O sea que no se me ocurre otra forma de demostrarlo. Ya Serapis indicó en su primer enlace que, en realidad, es sólo un caso particular de la demostración -mucho más general- de la suma de términos de una progresión aritmética; con la circunstacia de que la progresión sea la de los propios números naturales, y que el primer término sea el 1 y el último, n.
Eso está deducido hace mucho tiempo y por cierto, no fue Gaus quién la descubrió. Gauss -al parecer, es una anécdota- lo que hizo intuitívamente, a los 9 años de edad en clase de matemáticas fue el razonamiento de que 100 = 99+1 = 98+2 = 97+3,..., de forma similar a como también Serapis indicó en otro mensaje con menos números, y de ahí deducir cuanto sumaban los 100 primeros números naturales (1+2+3+...+100). Pero la ecuación general no la dedujo él.
Yo, por mi parte no se me ocurre otra forma de deducirla, tampoco puede haber tantas. Y si existen, lo más normal es que se demuestre que, en realidad, son equivalentes y es simplemente otra forma de deducir lo mismo.
Algo parecido a la formulación matricial de la Mecánica Cuántica de Heisenberg y la formulación de la Mecánica Ondulatoria de Schrödinger, que se demostró posteriormente que son equivalentes y que es lo mismo.
Así que si lo del enfoque, lo que pretende es que se me ocurra otra forma de demostrar (distinta de las que ya existen) que la suma de los números 1+2+...+n es = n(n+1)/2; pues no, no se me ocurre. (Y  si se me ocurriera lo más probable es que fuese algo equivalente a las demostraciones que ya hay).

2) Puede que no sea éso lo que se pregunta, sino lo que yo creí inicialmente, que la pregunta es: dada una sucesión de números naturales que se sabe que responden a una fórmula polinómica: ¿existe algún método para encontrar esa fórmula?
Y entonces me tengo que remitir a mi primera respuesta: creo que no porque puede haber infinitas posibilidades.
Para poner un ejemplo, en un mensaje anterior puse cómo ejemplo de una sucesión la siguiente:
1, 280, 565, 856, 1.153, 1.456, 1.765,...
Pues bien, el término general -la fórmula mediante la que se pueden calcular los términos de la sucesión, es:
51(n-27)+(43+n)3n+90n+1105
¿Qué cómo lo sé? ... Pues porque me la inventé yo, naturalmente.
Pero la cuestión es que se podrían cambiar el 51 por, por ejemplo, el 53, o el 467. De igual forma el 43, el 3 de "3n", o el 90, o el 1105, o cambiar los signos, o añadir más términos, como por ejemplo -3576(n-10) o aumentar exponentes, o...
Por eso, como puede haber un nº indeterminado de sumandos, restandos, multiplicandos, dividendos, exponentes, y, además cada uno de ellos puede ser cualquier nº natural, y además los coeficientes (51, 27, 43, 3, 90, 1105,...) puede ser cualquiera, ya que existen infinitos números naturales...
... pues es por éso que no creo que exista un método determinado para encontrar la fórmula polinómica -término general- de una sucesión; a partir de los números de la propia sucesión.

Así que en este segundo caso mi enfoque es el mismo que ya dije en mi primer mensaje: no existe forma (o al menos a mi no se me ocurre) de encontrar el término general de una sucesión de números naturales, aunque se sepa que corresponden a una fórmula polinómica.



Eso es lo que quiero, exactamente que descubras la forma de llegar a la misma conclusión de Gauss por el mismo camino o descubrir un nuevo camino.


Ya podrás opinar, criticar andarte por las ramas troleando un post que podría llegar a ser interesante.  Con tu nivel cuando te diga que la factorización no es el único camino.  Para
Enfocar  X.Y = P. Estaba motivado a compartir pero veo que hay poco interés, ya que lo sabes todo. Yo en particular cada día que pasa me doy cuenta de que soy más ignorante.



Título: Re: Secuencias enfoque Criptográfico
Publicado por: Minusfour_cierralo_o_baneamefull en 1 Diciembre 2021, 00:37 am
Bueno, edito el mensaje para que cada cual saque su "enfoque" particular. 



Título: Re: Secuencias enfoque Criptográfico
Publicado por: Serapis en 1 Diciembre 2021, 16:19 pm
...en la forma de llegar a la formula V=n(n+1)/2 que descubrió GAUSS.
Me chrría un poco eso de que lo 'descubrió' Gauss...

Esta serie aparece ya al menos 300 años antes que Gauss naciera, en el famoso 'triángulo de Tartaglia', de hecho tras la sucesión de números, es la siguiente serie que se aprecia.

Y me temo que es más probable que se conociera desde muchos siglos antes pero que se han perdido (o no conservado) las referencias. La imprenta, vino a dejar constancia de qué hizo o dijo quién, antes de eso las atribuciones eran inciertas.

A menudo uno 'reinventa' algo ya existente pero de lo que desconoce su existencia. Esto se ha dado, se da y se seguirá dando muchas veces... surge una necesidad y si alguien no conoce una solución, la busca, ignorando que otros antes que él ya lo buscaron y encontraron, si bien los nombres acuñados no permiten reconocerlo o bien el idioma supone un impedimento, etc... pued ehaber diversas razones. Otra cosa distinta es que alguien le dedique un estudio o mencione en alguna de sus obras.

De hecho cualquier niño 'curioso' por las matemáticas tropieda con ella tarde o temprano.


Título: Re: Secuencias enfoque Criptográfico
Publicado por: Minusfour_cierralo_o_baneamefull en 1 Diciembre 2021, 18:20 pm
Y este tambien lo edito ya que no es importante.
Saludos.



Título: Re: Secuencias enfoque Criptográfico
Publicado por: fzp en 2 Diciembre 2021, 16:31 pm
...
Ya podrás opinar, criticar andarte por las ramas troleando un post que podría llegar a ser interesante.  Con tu nivel cuando te diga que la factorización no es el único camino...
...  Estaba motivado a compartir pero veo que hay poco interés...

Pues es una postura que no entiendo. Si tienes ideas que aportar -interesantes- y que podrías compartir, no veo porqué se las niegas al resto de foreros. ¿Qué más te da lo que yo pueda pensar?

Si el hilo puede llegar a ser interesante seguro que habrá un buen número de foreros que lo lean y contribuyan e intercambien opiniones. ¿Qué tiene que ver lo que piense u opine uno solo, como yo? ¿Por que alguien me contradiga ya voy a darme la vuelta e irme. Una persona que se vista por los pies, madura, no se deja impresionar por las opiniones de otra y no actúa así. Al menos no por la opinión de una única persona (si ve que son muchas lo lógico sí que es pensar si a lo mejor los demás tienen razón).

No sé, no quiero criticar por criticar, pero me parece una postura algo "infantiloide". El foro no está para el lucimiento de nadie y que todos tengan que decir:"qué guay lo que has escrito". A todos nos han dicho alguna vez (o hemos dicho a otros) comentarios en contra, quizá a veces de forma algo exabrupta. Pero no por éso tenemos que decir: "¡ea! pues ya no participo, ya no digo nada más".

Como ya he dicho, si lo que aportas es interesante, les puede ayudar a otros, y lo encuentran útil, o simplemente les apetece discutir sobre ello, pues me imagino que te contestarán al hilo y se podrá mantener activo.

¿Porque otra persona no esté de acuerdo con lo que digo (o incluso me lo diga de forma que yo interpreto poco educada) ya voy a privar a los demás foreros de algo que yo creo importante, útil o simplemente interesante?. Lo dicho. Lo veo algo de "niño chico" -poca personalidad- y de muy poco interés real por el resto de foreros.




Título: Re: Secuencias enfoque Criptográfico
Publicado por: fzp en 5 Diciembre 2021, 16:41 pm
Pues -una vez más- tengo que autocorregirme. Dije antes:

Así que en este segundo caso mi enfoque es el mismo que ya dije en mi primer mensaje: no existe forma (o al menos a mi no se me ocurre) de encontrar el término general de una sucesión de números naturales, aunque se sepa que corresponden a una fórmula polinómica.

Pues ahora he visto que sí que se puede. He estado dándole vueltas al asunto y me parece que sí que hay una forma. Aunque, éso si, nos tienen que dar un número mínimo de elementos de la sucesión de la fórmula polinómica, y ese número mínimo es: suponiendo que el máximo exponente de ese polinomio es "k" (n^k) nos tendrán que dar como mínimo k + 2 términos de la sucesión.

Desde luego no he conseguido la demostración general, pero he probado varios casos particulares y parece que sí que funciona. La cosa es que me dió por probar cosas en una hoja de cálculo, y me dió por por poner en una columna los términos de una sucesión, y al lado poner otra columna con las diferencias entre términos 2º-1º, 3º-2º, 4º-3º,... etc. Por ver si variban o no. Y luego seguí haciéndolo con columnas adyacentes respecto de la columna anterior. Y en todas se llega a una columna en que las diferencias entre términos (de la columna anterior) son una constante. Y cuando se llega a ese punto, el número de columnas que hemos tenido que hacer es siempre igual al máximo exponente del polinomio que da origen a la sucesión de números.

Voy a explicarlo mas detalladamente y luego pongo un ejemplo que se pueda seguir. El método es el siguiente. Yo lo he hecho con una hoja de cálculo -pero igual se podría programar-. Pones en una columna los términos de la sucesión que te han dado, haces una columna al lado (a la derecha) con las restas: 2º término - 1º término, 3º término - 2º término; y así sucesívamente. Y después repites la operación con otra columna nueva a la derecha de la misma forma: 3º término - 2º término, 4º término - 3º término, ... etc. Pues bien, llega un momento en que en la nueva columna que está haciendo todos los términos son iguales. Ahí es dónde encuentras el exponente máximo de tu polinomio (en n). Si has necesitado "k" columnas tu polinomio tendrá como exponente máximo (k-1); ésto es así debido a que hay un exponente 0. Entonces, si las constantes se producen en la columna 9ª quiere decir que tu polinomio tendrá como máximo exponente 8 (0,1,2...8). En general, si tienes "k+1" columnas, sabes que tu polinomio tiene exponentes entre 0,1,... k.

Una vez que has llegado a ese punto ya sabes que tu fórmula polinómica es del tipo:
a0*n^0 + a1*n^1+ a2*n^2+... +ak*n^k

A partir de ahí cómo puedes calcular todas las potencias de los números naturales (n = 1, 2, 3,...) puedes plantear un sistema de ecuaciones lineales c donde las incónitas son a0, a1, a2,... y los valores que hacen que se cumplan las ecuaciones son los valores que te han dado como términos de la sucesión.

Sé que así es un poco complicado, pongo un ejemplo.

He preparado una función polinómica  (4*n^5 - 3*n^2) que indico en la siguiente imagen:

(https://i.imgur.com/shZGwOI.jpeg)

En ella indico en la columna A los números naturales y en la columna B los términos de la sucesión (los que nos darían como datos: 1, 116, 945, 4048,...).

Pues bien a partir de esa columna B que nos dan como dato, nosotros hacemos una columna C donde escrimos las diferencias entre términos consecutivos: C3 = B3 - B2; C4 = B4 - B3; C5 = B5 - B4;...

Ahora volvemos a hacer lo mismo en una nueva columna D con respecto a los datos de la columna C:
D4 = C4 - C3; D5 = C5 - C4;...

Y así sucesívamente... ¿hasta cuando? hasta que una columna nos de una constante. En este caso la columna G ya nos da como resultado de las diferencias de la columna anterior un valor constante (480). Ahí paramos de hacer más columnas.

Pues bien como tenemos 6 columnas (contando desde la 1ª en que nos dieron los datos de la sucesión), quiere decirse que nuestro exponente máximo es 6 - 1 = 5. Ello es porque también hay un exponente 0. Por tanto nuestra fórmula polinómica tiene que ser del tipo:
sn = a0 + a1n^1 + a2n^2 + a3n^3 + a4n^4 + a5n^5
siendo sn el término general de la sucesión.

Entonces, como podemos calcular las distintas potencias de n^1, n^2,... para n=1, n=2,...
con 6 incógnitas (a0, a1, a2, a3, a4, a5) quiere decirse que podemos montar un sistema de 6 ecuaciones lineales con 6 incógnitas.

Eso lo pongo en la siguiente imagen:

(https://i.imgur.com/PFTBlts.jpeg)

En ella he expresado en forma matrical el sistema de ecuaciones lineales:
-en A24-A29 los nºs naturales
-en B23-G23 los exponentes (0-5)
-en B24-G29 la matriz de coeficientes del sistema (los productos de los nºs naturales por los exponentes)
-en H24-H29 las incógnitas
-en I24-I29 los valores que resuelven el sistema de ecuaciones... que a su vez son los que nos han dado como datos

Ahora la resolución del sistema es bastante fácil dado que Calc (LibreOffice) ofrece una función que nos da directamente la matriz inversa de otra dada. Esta matriz inversa nos la la Calc en B31-G36. Y ya no hay nada más que multiplicar esta matriz por la de los valores que resuelven el sistema (I24-I29), cosa que también Calc nos proporciona una función de matrices para hacerlo por nosotros.

El resultado está en I31-I36. Como puede verse los valores no son totalmente exactos. Es el problema de la resolución de matrices, que los errores de cálculo son acumulativos. Pero puede verse que los valores con exponentes -10, -11, -12 son prácticamente = 0. Y que nos queda entonces que los valores de los exponentes n^2 y n^5 son, respectivamente: -3 y 4. Como en la ecuación original de la que partimos.

Como digo, no tengo una demostración general de que ésto sea siempre así, pero en los casos particulares que he visto, funciona. Parece que que en cada columna de diferencias se van perdiendo los terminos de exponentes de mayor a menor hasta que en la última columna nos aparece el exponente 0 y éso da lugar a una constante. Pero ésto son sólo especulaciones mías.

El porqué nos tienen que dar al menos k+2 términos de la sucesión (siendo k el valor del exponente máximo. Pues porque tendremos exponentes desde 0 hasta k (k+1) y porque necesitaremos al menos un valor más para concluir que en la última columna de la derecha se repite el valor. Si sólo tuviéramos el primer valor donde aparece la constane no lo podríamos saber, necesitamos al menos un término más para saber que se repite y que, por tant, es constante.

EDITO: ya me he dado cuenta de porqué se van reduciendo los eponentes en cada columna a la derecha. Al restar un elelmento de su anterior estamos restando un polinomio de n con exponentes 0, 1, 2,..., k de otro (n+1) con los mismos coeficientes. Ello hace que estemos restando un término en ak*n^k de otro término ak*(n+1)^k. Pero, a su vez el término ak(n+1)^k puede escribirse cómo: ak*n^k + otro-polinomio-de-grado-(k-1). Con lo cual los términos ak*n^k se cancelan y por eso en la columna de la derecha solo quedarán exponentes (k-1). Al ir repitiendo en las sucesivas columnas de la derecha la misma operación, van desapareciendo los sucesivos exponente hasta quedar exponente 0 y por éso al final queda una constante, y las veces que hemos tenido que repetir la operación nos indica el exponente máximo del polinomio.