elhacker.net cabecera Bienvenido(a), Visitante. Por favor Ingresar o Registrarse
¿Perdiste tu email de activación?.

 

 


Tema destacado: Trabajando con las ramas de git (tercera parte)


+  Foro de elhacker.net
|-+  Informática
| |-+  Software
| | |-+  error de redundancia ciclica
0 Usuarios y 1 Visitante están viendo este tema.
Páginas: [1] Ir Abajo Respuesta Imprimir
Autor Tema: error de redundancia ciclica  (Leído 7,280 veces)
Badcode


Desconectado Desconectado

Mensajes: 2.031


sólo se que puedo ser punk-rocker...............


Ver Perfil
error de redundancia ciclica
« en: 11 Diciembre 2003, 15:39 pm »

muchas veces grabando o leyendo cds puedes ver este error(crc), pues he buscado por internet informacion y me encontrado esto:

Citar
Un código cíclico es aquel en el que cualquier rotación cíclica (lo que sale por un lado, entra por el otro) de una palabra código produce otra palabra código válida. Los códigos cíclicos son una familia de códigos bloque lineales que son especialmente fáciles y eficientes de generar y verificar.

Tradicionalmente los códigos cíclicos se expresan como polinómios en cuerpo de Galois GF(q), típicamente GF(2). Suponiendo una palabra código X[D]=(xn-1, ..., x0), también la podemos expresar como un polinomio de grado "n-1". de la forma X[D]=xn-1Dn-1+ ... + x1D + x0.

Si X[D] es una palabra código de un código cíclico, el resto de dividir D*X[D] entre (Dn-1) es otra palabra código. De hecho esta operación lo que produce es una rotación cíclica del código.

Dado un polinomio mónico (su coeficiente de mayor grado es 1) g[D] que es una palabra código de menor grado (m) de un código cíclico (generador del código), y un polinomio de información a[D] sobre GF(q), tenemos que a[D]*g[D] es una palabra código.

g[D] y sus primeras (n-1-m) rotaciones cíclicas forman una base del espacio vectorial que genera el código. Recordemos que el códgio tiene como parámetros (n, k) y un polinomio generador de grado "m".

El polinomio generador g[D] debe ser factor de (Dn-1). Esto es necesario para que se genere un código cíclico.

Por lo tanto, cualquier código cíclico sobre un cuerpo de Galois de "q" elementos GF(q), con "k" dígitos de información y una longitud de bloque de "n", es generado por un polinomio mónico de grado m = n-k sobre el cuerpo de Galois GF(q) y que divide a (Dn-1).

Y a la inversa, cualquier polinómio mónico g[D] de grado m = n-k sobre un cuerpo de Galois de "q" elementos GF(q) y que divida a Dn-1, genera un código cíclico con "k" dígitos de información y longitud de bloque "n".

Si se aplican directamente las ecuaciones C[D]=X[D]*g[D], no se obtiene un código sistemático. Para conseguirlo, desplazamos la información (n-k) lugares a la derecha y añadimos la redundancia al final. La redundancia es el resto de dividir Dn-kX[D] entre g[D]. Es decir, lo que se transmite tiene la forma C[D]=(Dn-kX[D]-R[D]).

Para verificar el código, tendremos un polinomio comprobador h[D], que cumple que g[D]*h[D]=Dn-1, y calculamos F[D]=C[D]*h[D]. El síndrome son los componentes de F[D] entre "k" y "n-1", inclusive. Si no hay errores, esos valores serán cero.

Por supuesto, se puede ver que h[D] es, a su vez, un polinomio generador (también es mónico) de código cíclico, y que su polinomio comprobador es g[D].

C[D] es una palabra código si y solo si es divisible de forma exacta por g[D]. Por lo tanto, para detectar un error es preciso que dicho error e[D] NO sea divisible por g[D], por ser un código lineal.

Puede verse fácilmente que siempre se detectan errores simples.

Si el polinomio generador g[D] es de la forma (1+Dh)m[D], tendrá un número par de términos distintos de cero y se puede comprobar fácilmente que detecta cualquier número impar de errores.

Se define el polinomio p[D] de grado "r" como "primitivo" si es irreducible, es un factor de (D(2r-1)-1) y no es factor de ningún otro polinomio (DN-1) para N < 2r-1. Si g[D]= p[D]*a[D], detectamos todos los errores dobles.

Una ráfaga de errores de longitud B es un grupo de B dígitos en los que el primero y el último es uno. Los del medio pueden serlo o no. Un código cíclico detecta todos los errores de ráfaga de longitud menor o igual a n-k. Si la ráfaga tiene tamaño n-k+1, la probabilidad de que el error nos pase desapercibido es de 2-(n-k-1). Para ráfagas de mayor tamaño, la probabilidad de que el error nos pase desapercibido es de 2-(n-k), suponiendo que los errores ocurran al azar. Supongamos g[D]=(1+D)*p[D], con p[D] polinomio primitivo de grado "r". Bajo estas circunstancias, g[D] es un polinomio generador con parámetros (2r-1, 2r-r-2) y que cumple las siguientes propiedades:


Detecta todos los errores simples.

Detecta cualquier número de errores impares.

Detecta todos los errores dobles.

Detecta todas las ráfagas de error de longitud <=r+1

Detecta todas las ráfagas de error de longitud r+2 con probabilidad 1-2-r.

Detecta todas las ráfagas de error de longitud r+3 o superior con probabilidad 1-2-r-1.
Por ejemplo, el CCITT V.41 tiene un polinomio generador D16+D12+D5+1, que es (D+1)*(D15+D14+D13+D12+D4+D3+D2+D+1, y genera un código (32767, 32751).

Los polinomios generadores están muy vinculados, por lo tanto, a polinomios primitivos, y éstos a Linear Feedback Shift Registers.




bueno me voy a por una aspirina... ;D ::)


En línea

Songoku
Supersayan y
CoAdmin
***
Desconectado Desconectado

Mensajes: 15.870


Supersayan


Ver Perfil WWW
Re:error de redundancia ciclica
« Respuesta #1 en: 11 Diciembre 2003, 16:47 pm »

Buenoooooooooo menudo lio xddd, pero ablando en plata ese error de redundancia ciclica lo que quiere decir es que el cd esta rayado. Aun asi y todo si se graba a una velocidad muy lenta (osea lo menos que se pueda como 1 o 2x se puede llegar a copiar el cd y asi obtener un cd normal si rayaduras claro y que no da errores.
Saludos...

Songoku


En línea


Badcode


Desconectado Desconectado

Mensajes: 2.031


sólo se que puedo ser punk-rocker...............


Ver Perfil
Re:error de redundancia ciclica
« Respuesta #2 en: 11 Diciembre 2003, 17:59 pm »

bueno el crc asi como esta explicado mas bien sirve para entender como se raya mi cerebro que en si para entender que se trata de yn rayajo o algun dedo marcado en el cd xddd :P
En línea

sclub


Desconectado Desconectado

Mensajes: 591


Ver Perfil
Re:error de redundancia ciclica
« Respuesta #3 en: 12 Diciembre 2003, 11:32 am »

y dices que eso es un error de un cd?!?!?! :o

y tanto rollo para decirte que el cd esta rallao? una cosa tan simple como esa?!!? ufff...!! nunca pense que un cd pudiese dar tanti lio.... si a mi me da ese error, simplemente se me van las ganas de grabarlo... xDDD

sal12

lord Alpha
En línea

... because making UNIX friendly is easier than debugging Windows.
Páginas: [1] Ir Arriba Respuesta Imprimir 

Ir a:  

Mensajes similares
Asunto Iniciado por Respuestas Vistas Último mensaje
Error de redundancia cíclica
Multimedia
Deivin 2 5,059 Último mensaje 13 Octubre 2005, 18:56 pm
por el-brujo
disco duro error de redundancia ciclica
Windows
davidprey 5 50,655 Último mensaje 4 Abril 2015, 21:58 pm
por miniyó (tras dr. maligno)
Error redundancia ciclica Recuperar informacion
Windows
elseine 0 2,630 Último mensaje 14 Agosto 2013, 19:06 pm
por elseine
Error de datos comprobacion de redundancia ciclica
Dudas Generales
bury71 3 4,460 Último mensaje 30 Agosto 2015, 20:11 pm
por Orubatosu
disco duro error de redundancia ciclica
Windows
sagi812 5 11,067 Último mensaje 24 Agosto 2016, 19:35 pm
por cristobaljerez
WAP2 - Aviso Legal - Powered by SMF 1.1.21 | SMF © 2006-2008, Simple Machines